

March RBC Meeting Review

The Four Phases of the Planning Process

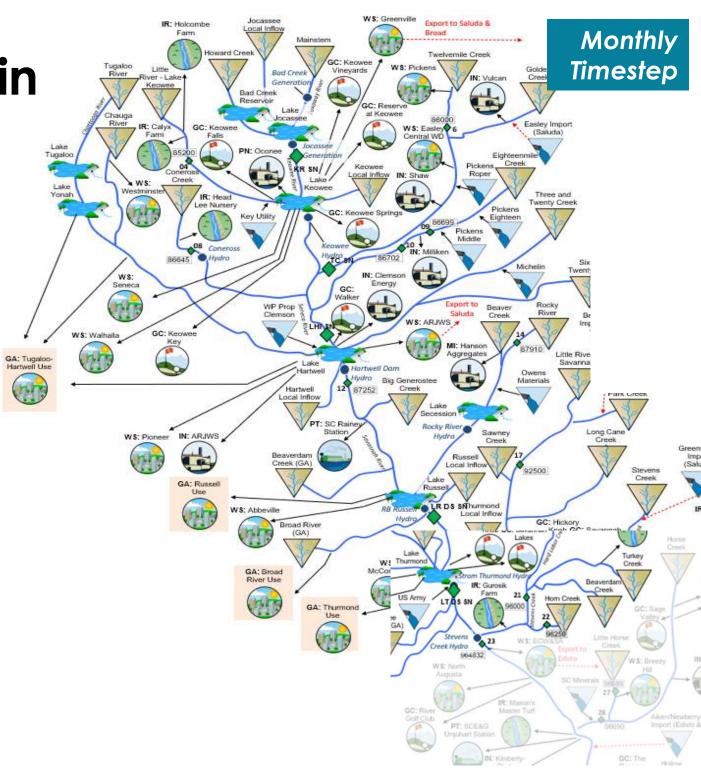
Phase 1 Develop a vision statement and goals Learn about the basin's water resources and modeling tools **Understand** Baseline Evaluate water demand projections Phase 2 Evaluate current and future water availability issues Identify and quantify potential water shortages through year **Assess Future** 2070 for several water demand scenarios **Availability** We Are Here Phase 3 Develop and evaluate water management strategies Develop Recommend and prioritize strategies Strategies Phase 4 Develop legislative, policy, technical and planning process recommendations Develop the Plan Prepare the River Basin Plan that includes an implementation plan, Identifies drought response initiatives, and considers public input

Surface Water Scenarios

- Unimpaired Flow (UIF) Scenario
 - Naturalized conditions (no surface water withdrawals, discharges, or reservoirs)
- Current Surface Water Use Scenario
 - Uses most recent 10-yr average withdrawals (as reported by month) in most cases
- Permitted and Registered (P&R) Surface Water Use Scenario
 - Uses current fully-permitted and registered amounts
- Moderate Water Demand Projection Scenario
 - Future water demand projection based on moderate growth and normal climate
- High Water Demand Projection Scenario
 - Future water demand projection based on high growth and hot/dry climate

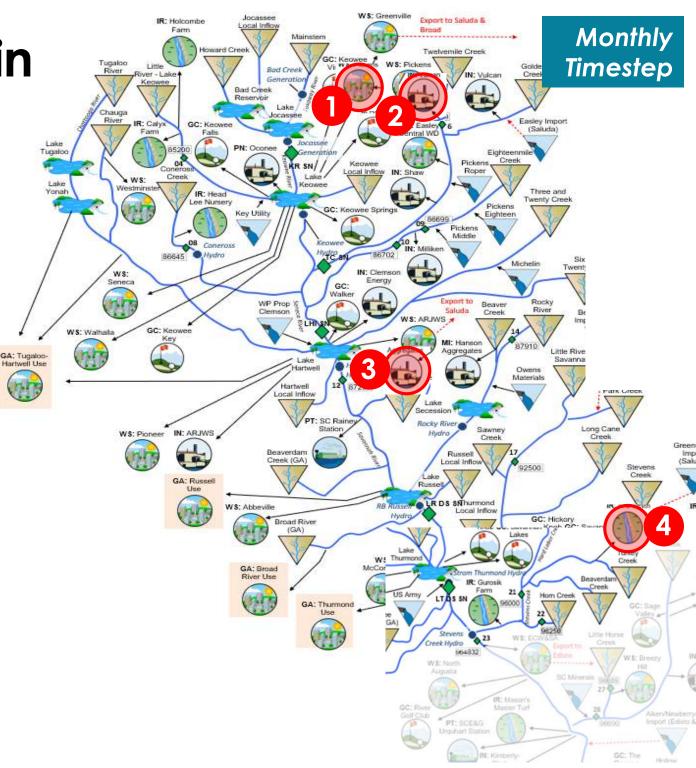
Upper Savannah River Basin - Summary of Average Annual Surface Water Demands by Scenario

All values in million gallons per day


Surface Water Use Sector	Current Use	2070 Moderate Demand	2070 High Demand	Permitted and Registered (P&R)
Thermoelectric/ Nuclear Power ¹	28	28	31	48
Public Water Supply	59	118	168	284
Industrial	8.0	11	20	53
Golf Courses	0.8	0.7	1.5	9.8
Agricultural	0.21	0.24	0.45	13.0
Mining	0.27	0.16	0.51	1.0
GA-Side Water Users	22	30	30	65
Total all Sectors	118	187	252	470

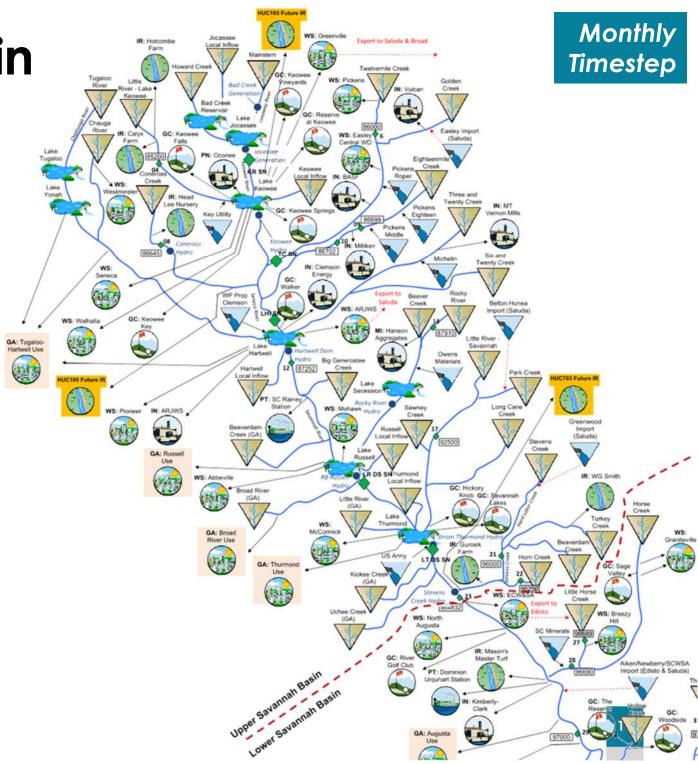
¹ In this table, demands for thermoelectric/nuclear power represent the NET consumptive amount.

Upper Savannah River Basin Current Use Scenario


Map ID	Water User	Max Shortage (MGD)	Frequency of Shortage
			;S
	No Sh	ortage	
	140		

Upper Savannah River Basin Permitted & Registered Scenario

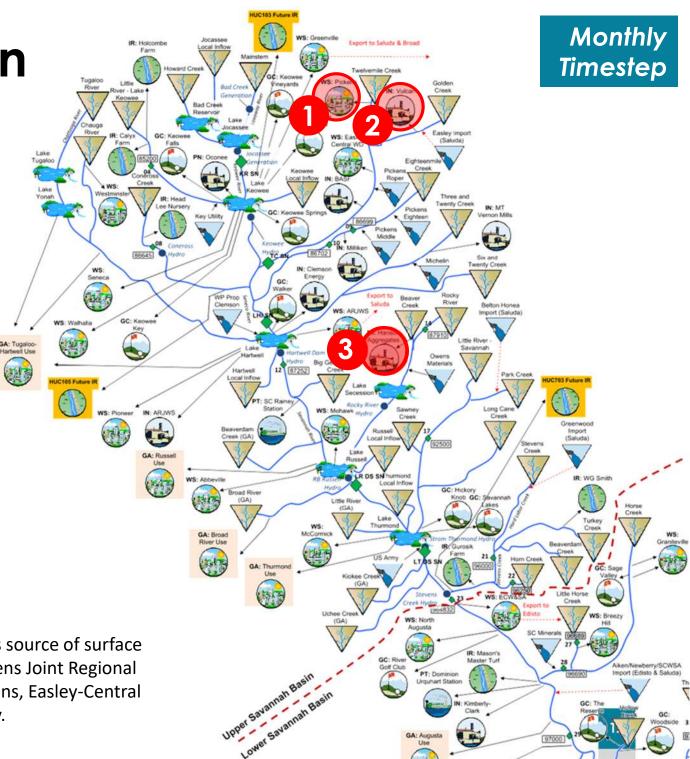
Map ID	Water User	Max Shortage (MGD)	Frequency of Shortage
1	WS: Pickens	4.5	7 %
2	IN: Vulcan	1.3	11%
3	MI: Hanson Aggregates	0.6	3%
4	IR: WG Smith	0.1	1%



Upper Savannah River Basin

2070 Moderate Demand Scenario

Map ID	Water User	Max Shortage (MGD)	Frequency of Shortage
		, ade	;S
	No Sh	ortage	


Upper Savannah River Basin

2070 High Demand Scenario

Map ID	Water User	Max Shortage (MGD)	Frequency of Shortage
1	WS: Pickens*	1.0	0.4%
2	IN: Vulcan	2.5	12%
3	MI: Hanson Aggregates	0.3	1%

^{*} In the next 3 to 4 years, Pickens will no longer rely on Twelvemile Creek as its source of surface water supply, and will instead withdraw from Lake Keowee, as part of the Pickens Joint Regional Water System, which will include Pickens County Water Authority, City of Pickens, Easley-Central Water District, Six Mile Rural Community Water District, and the City of Liberty.

